Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

Identifieur interne : 002709 ( Main/Exploration ); précédent : 002708; suivant : 002710

Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

Auteurs : Zhihong Sun [Estonie] ; Ülo Niinemets ; Katja Hüve ; Bahtijor Rasulov ; Steffen M. Noe

Source :

RBID : pubmed:23442171

Descripteurs français

English descriptors

Abstract

Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production.

DOI: 10.1111/nph.12200
PubMed: 23442171


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).</title>
<author>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014</wicri:regionArea>
<wicri:noRegion>51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</author>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</author>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</author>
<author>
<name sortKey="Noe, Steffen M" sort="Noe, Steffen M" uniqKey="Noe S" first="Steffen M" last="Noe">Steffen M. Noe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23442171</idno>
<idno type="pmid">23442171</idno>
<idno type="doi">10.1111/nph.12200</idno>
<idno type="wicri:Area/Main/Corpus">002684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002684</idno>
<idno type="wicri:Area/Main/Curation">002684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002684</idno>
<idno type="wicri:Area/Main/Exploration">002684</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).</title>
<author>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014</wicri:regionArea>
<wicri:noRegion>51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</author>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</author>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</author>
<author>
<name sortKey="Noe, Steffen M" sort="Noe, Steffen M" uniqKey="Noe S" first="Steffen M" last="Noe">Steffen M. Noe</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmosphere (MeSH)</term>
<term>Butadienes (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Chimera (MeSH)</term>
<term>Climate Change (MeSH)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Pentanes (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Atmosphère (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Butadiènes (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Changement climatique (MeSH)</term>
<term>Chimère (MeSH)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Pentanes (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Carbon</term>
<term>Hemiterpenes</term>
<term>Nitrogen</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Butadiènes</term>
<term>Carbone</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Atmosphere</term>
<term>Chimera</term>
<term>Climate Change</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Atmosphère</term>
<term>Changement climatique</term>
<term>Chimère</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23442171</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>198</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).</ArticleTitle>
<Pagination>
<MedlinePgn>788-800</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.12200</ELocationID>
<Abstract>
<AbstractText>Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production.</AbstractText>
<CopyrightInformation>© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Zhihong</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hüve</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Noe</LastName>
<ForeName>Steffen M</ForeName>
<Initials>SM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001272" MajorTopicYN="N">Atmosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="Y">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="N">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23442171</ArticleId>
<ArticleId IdType="doi">10.1111/nph.12200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Noe, Steffen M" sort="Noe, Steffen M" uniqKey="Noe S" first="Steffen M" last="Noe">Steffen M. Noe</name>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002709 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002709 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23442171
   |texte=   Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23442171" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020